FacebookInstagramTwitterContact

 

Eating For Your Eyes: Carrots Deliver Nutrients That Preserve Vision           >>           Diabetic? Eat More Eggs           >>           Protect Your Kids From Pollution-Related Asthma With Vitamin D           >>           Miscellaneous Offences Act 2021           >>           Designs of 'Baju Melayu' Studs           >>           Spectrum Unveil 2024 Exhibition           >>           'People Call Me A Monster For Dyeing My Dog Pink - I Want Him To Match My Outfit'           >>           Number of New Converts Increase           >>           Mum's Horror As Group Text Invite For Daughter's 1st Birthday Party Goes Terribly Wrong           >>           Kid Cudi Engaged To Lola Abecassis Sartore           >>          

 

SHARE THIS ARTICLE




REACH US


GENERAL INQUIRY

[email protected]

 

ADVERTISING

[email protected]

 

PRESS RELEASE

[email protected]

 

HOTLINE

+673 222-0178 [Office Hour]

+673 223-6740 [Fax]

 



Upcoming Events





Prayer Times


The prayer times for Brunei-Muara and Temburong districts. For Tutong add 1 minute and for Belait add 3 minutes.


Imsak

: 05:01 AM

Subuh

: 05:11 AM

Syuruk

: 06:29 AM

Doha

: 06:51 AM

Zohor

: 12:32 PM

Asar

: 03:44 PM

Maghrib

: 06:32 PM

Isyak

: 07:42 PM

 



The Business Directory


 

 



Space & Science


  Home > Space & Science


On Mars, Life Could Be Hiding Under The Rocks


Credit: NASA/JPL-Caltech

 


 January 31st, 2017  |  10:43 AM  |   1729 views

SPACE.COM

 

Living on Mars would be tough by any measure — so tough, that there's considerable debate about whether even the hardiest of microbes could survive. The atmosphere is thin, the surface is baked with radiation and the planet itself is mostly arid, dusty and wind-swept.

 

But there could be niches where life thrived in the distant past, when Mars had a thicker atmosphere and a wetter surface. So when Red Planet scientist Janice Bishop was invited to look at carbonate rocks in the Mojave Desert a few years ago, she immediately saw implications for Mars.

 

Bishop had already published a 2006 International Journal of Astrobiology paper calling iron oxides an "ultraviolet sunscreen" for ancient photosynthesis on Earth. The result of the newer study, published in 2011 in the same journal showed that the Mojave rocks collected also had iron oxide coatings, under which carbonates were hiding.

 

"They were all hiding under this red mineral at the top, called hematite," Bishop told Seeker in an interview. Hematite is also a common element on Mars.

 

Besides being senior research scientist and chair of the astrobiology group at the SETI Institute, Bishop is known for her work creating an instrument on the Mars Reconnaissance Orbiter called CRISM (Compact Reconnaissance Imaging Spectrometer). The spacecraft has been taking high-resolution pictures and spectroscopic images of Mars for more than a decade, providing reams of information on how the surface looks like today and how it may have evolved.

 

And Bishop is one of several scientists working on the "sunscreen" idea. The University of Maryland's Gozen Ertem, for example, is looking at how well biomolecules can hide from ultraviolet radiation in different mixtures. She will present on her research at the American Association for the Advancement of Science Conference next month. (Ertem did not respond to requests for an interview.)

 

It's unclear how well Martian microbes (if they existed) would have fared in their environment, but at the least the studies on iron oxides are yielding valuable information about how life evolved on Earth. This could help scientists better understand the possibility of life in other environments across the solar system, or even exoplanetary systems.

 

Some people in this field are trying to figure out how microbes could have evolved when the Earth had no protective ozone layer, similar to what is on Mars today. A 2015 Geology paper led by Tina Gauger at the University of Tubingen suggests that some strains of bacteria could have created iron oxide layers in their environment for protection.

 

The role of microbes depositing iron oxide has also been explored extensively by Kurt Konhauser, who is with the department of Earth and atmospheric sciences at the University of Alberta. Besides being co-author of the 2015 paper, Konhauser has authored or co-authored multiple other papers looking at the ancient iron cycle, how quickly microbes could generate ferric oxide in different environments, and the role of photoplankton in transfering phosphorous to the sea floor.

 

But would this process be enough to save a Martian microbe today? Bishop says she believes there were microbes in the distant past, but in the arid Red Planet environment today, "It's kind of a stretch."

 

However, she added, other researchers think that life could persist in briny water environments on the planet, such as recurring slope lineae that occur seasonally in craters and other sloped locations on Mars.

 


 

Source:
courtesy of SPACE

by Elizabeth Howell, Seeker

 

If you have any stories or news that you would like to share with the global online community, please feel free to share it with us by contacting us directly at [email protected]

 

Related News


Lahad Datu Murder: Remand Of 13 Students Extende

 2024-03-30 07:57:54

Sydney Church Stabbing: Australian Bishop Forgives Alleged Attacker

 2024-04-19 00:07:49

Google Sacks Staff Protesting Over Israeli Contract

 2024-04-19 00:33:16